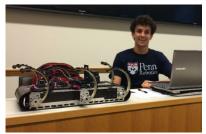
A Category Theoretic Treatment of Robot Hybrid Dynamics with Applications to Reactive Motion Planning and Beyond

Jared Culbertson¹

Paul Gustafson²
Peter Stiller⁴

Dan Koditschek³

¹Air Force Research Laboratory


²Wright State University

³University of Pennsylvania ⁴Texas A&M University

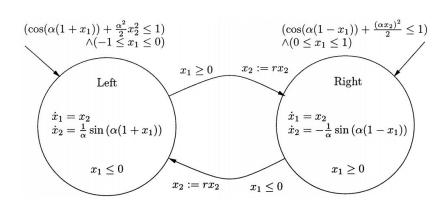
September 2020

Can we make behaviors modular?

Robot Whisperer:

English	Type Theory
True	1
False	0
A and B	$A \times B$
$A ext{ or } B$	A + B
If A then B	$A \rightarrow B$
A if and only if B	$(A \to B) \times (B \to A)$
Not A	A o 0

Hybrid systems


A **hybrid system** *H* consists of

- ightharpoonup a directed graph $G = (V, E, \mathfrak{s}, \mathfrak{t})$;
- ightharpoonup for each **mode** $v \in V$,
 - ightharpoonup an ambient smooth system (M_{ν}, X_{ν})
 - ightharpoonup an active set $I_{\nu} \subset M_{\nu}$
 - ▶ a flow set $F_v \subset I_v$
- ▶ for each **reset** $e \in E$, a **guard set** $Z_e \subset I_{\mathfrak{s}(e)}$ and an associated **reset map** $r_e \colon Z_e \to I_{\mathfrak{t}(e)}$.

Morphisms: hybrid semiconjugacies

"execution-preserving maps"

Cf. Lerman. "A category of hybrid systems." arXiv:1612.01950.

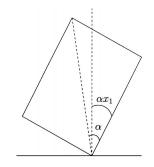
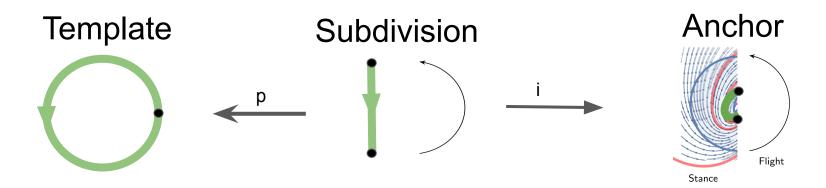


Image source: Lygeros et al., "Dynamical properties of hybrid automata." IEEE Transactions on automatic control, 2003.

Anchoring body Templates (Sec. 3.1) Sagittal plane biped Tail-energized SLIP Tail-energized monoped

Templates and anchors



De, Avik, and Daniel E. Koditschek. "Parallel composition of templates for tail-energized planar hopping." 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015.

Anchoring a limit cycle in a vertical hopper

A **template-anchor pair** is a span $T \stackrel{p}{\leftarrow} S \stackrel{i}{\rightarrow} A$ such that

- p is a hybrid subdivision;
- ▶ *i* is a hybrid embedding;
- ightharpoonup i(S) is attracting in A.

Hierarchical composition

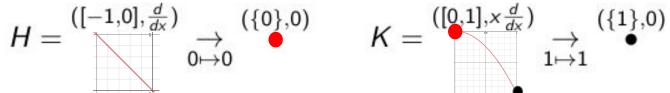
Theorem (CGKS). Template-anchor pairs are weakly associatively composable.


Sequential composition

Goal: define a class of "funnel-like" hybrid systems closed under sequentially composition

Burridge, Robert R., Alfred A. Rizzi, and Daniel E. Koditschek. "Sequential composition of dynamically dexterous robot behaviors." *The International Journal of Robotics Research* 18.6 (1999): 534-555.

A "navigate-to-goal" funnel



Theorem 3. The piecewise continuously differentiable "move-to-projected-goal" law in (11) leaves the robot's free space \mathcal{F} (1) positively invariant; and if Assumption 2 holds, then its unique continuously differentiable flow, starting at almost 1 any configuration $x \in \mathcal{F}$, asymptotically reaches the goal location x^* , while strictly decreasing the squared Euclidean distance to the goal, $\|x - x^*\|^2$, along the way.

Arslan, Omur, and Daniel E. Koditschek. "Sensor-based reactive navigation in unknown convex sphere worlds." *The International Journal of Robotics Research* (2019).

How to define ``funnel-like" systems?

- Problem: the naive measure-theoretic and topologically notions of "almost all" are incompatible with fully general sequential composition
- Example:

Is there a notion of "generalized execution" compatible with sequential composition?

Directed systems

A directed hybrid system $H: H_i \rightsquigarrow H_f$ is a tuple (H, η_i, η_f) consisting of

- a metric hybrid system H,
- ightharpoonup embeddings $\eta_i \colon H_i \to H$ and
- ▶ a hybrid embedding $\eta_f \colon H_f \to H$ such that each component $(\eta_f)_V$ is a diffeomorphism, and $G(H_f)$ is a sink in G(H)

such that for all ε , T > 0 and $x \in H$, there exists an (ε, T) -chain from x to some $y \in H_f$.

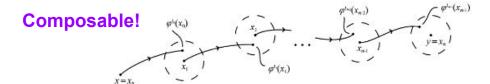
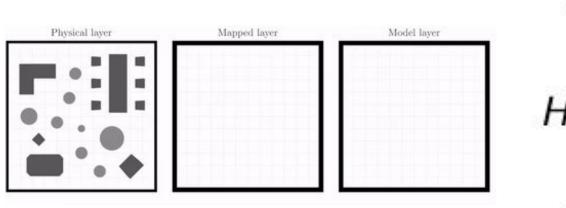
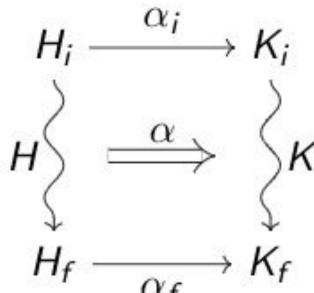




Image source: Alongi and Nelson, Recurrence and Topology. AMS, 2007.

A double category of hybrid systems

V. Vasilopoulos, D.E. Koditschek (2018). Reactive Navigation in Partially Known Non-Convex Environments. In WAFR 2018.

Challenges for Topological Complexity Theorists

- Effective versions of TC for given affordances
 - Which paths can we anchor in a realistic system?
 - Physically grounded TC:
 - Path -> directed system
 - End point -> (steady-state) behavior

Thanks!

arXiv:1911.01267

